ВОЛОКОННО-ОПТИЧЕСКИЙ КАНАЛ УТЕЧКИ РЕЧЕВОЙ ИНФОРМАЦИИ:

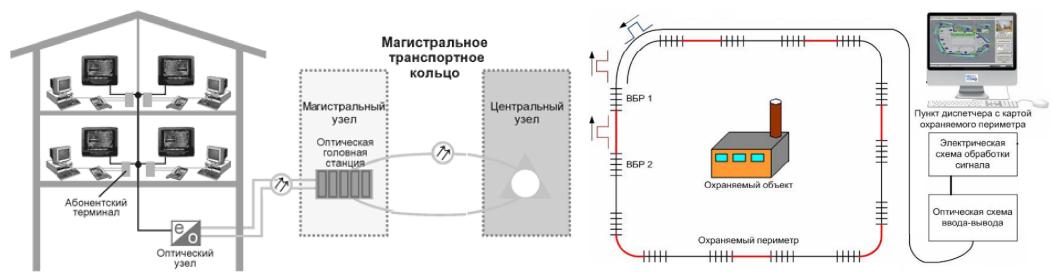
ΦИЗИЧЕСКАЯ MODEND YIPO3

Российский Государственный Гуманитарный Университет (РГГУ) Институт Информационных Наук и Технологий Безопасности (ИИНиТБ)

В.В. Гришачев, к.ф.-м.н, доц.;

О.В. Казарин, д.т.н., проф.;

Ю.Д. Калинина, асп.;


Волоконно-оптические технологии объекта информатизации

преимущества волоконно-оптических технологий приводят к их широкому применению на объектах информатизации

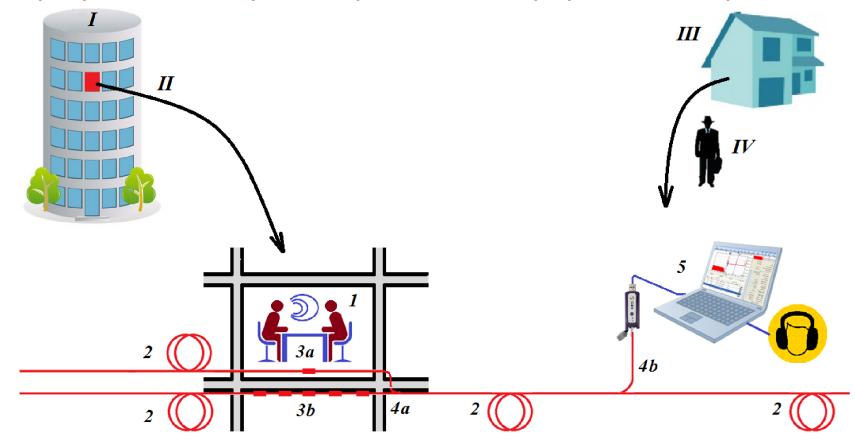
ОСНОВНЫЕ НАПРАВЛЕНИЯ ПРИМЕНЕНИЯ

***** *оптические транспортные сети:* телекоммуникации, локальная связь, кабельное ТВ, удлинители интерфейсов и т.д.

❖ оптические измерительные сети: распределенные измерительные системы и датчики, системы охраны периметра, системы пожарной сигнализации и т.д.

© Гришачев В.В и др. ИИНиТБ РГГУ

Модель угроз безопасности информации объекта с ВОТ


Основные угрозы безопасности информации

- перехват трафика в волоконно-оптических системах передачи информации;
- > сбор информации через штатные волоконно-оптические коммуникации и сети;
- ➤ сбор информации с применением волоконно-оптических средств технической разведки;

один из возможных ТКУИ:

волоконно-оптический канал утечки акустической (речевой) информации через штатные оптические сети


Формула канала утечки речевой информации через ВОК

формирование волоконно-оптического канала утечки речевой информации на основе паразитных воздушных (прямых) и вибрационных (структурных) акустических модуляций светового потока в оптических кабельных системах для современного учреждения (I) с выделенным помещением (II) со зданием (III) вблизи волоконно-оптических коммуникаций с нарушителем (IV).

1 - источник речевой информации, 2 - волоконно-оптические коммуникации, 3 - оптические неоднородности в кабельной системе при прямом (a) и структурном (b) воздействиях при формировании паразитных модуляций потоков света, 4 - оптический разветвитель штатный (a) и нештатный (b), 5 - технические средства разведки нарушителя.

Паразитные акустические модуляции световых потоков в ОВ

по оптической сети

Информативный акустический сигнал – воздушный звук

воздушный (прямой) акустический канал утечки речевой информации

Основные параметры речевого сигнала в воздухе

Частотный диапазон70 Гц7000 Гц (по длине волны 5....0,005 м)175 Гц5600 Гц (область частот с 95% энергии)Интенсивность звука55 дБ60 дБ (спокойный разговор)65 дБ70 дБ (громкая речь)[0 дБ=1 пВт/м²]

Характеристики распространения звука в воздухе по интенсивности

Ослабление свободного пространства на 60 дБ через 1 км от точечного источника относительно начального расстояния в 1 м Коэффициент поглощение звука (объем) ослабление в е-раз на расстоянии 40,3 км

для звука на частоте 1 кГц = 0,11 дБ/км

(с.85-86 в кн. В.А.Красильников Звуковые волны в воздухе, воде и твердых телах. М.: ГИТТЛ, 1954)

Коэффициент поглощения звука в воздухе $\alpha \sim 1,85 \cdot 10^{-11} \cdot f^2$ с²/м (по интенсивности), $\alpha \sim 18,5 \cdot 10^{-6}$ м⁻¹=0,08 дБ/км (для f=1 кГц)

(Физические величины. Справочник. Под ред. Григорьев И.С., Мейлихов Е.З. М.: Энергоатомиздат. 1991) Коэффициент звукопоглощения (поверхностью) 0,042 (кирпич), 0,015 (бетон), 0,06-0,1 (дерево), 0,4-0,8 (плита ДВП)

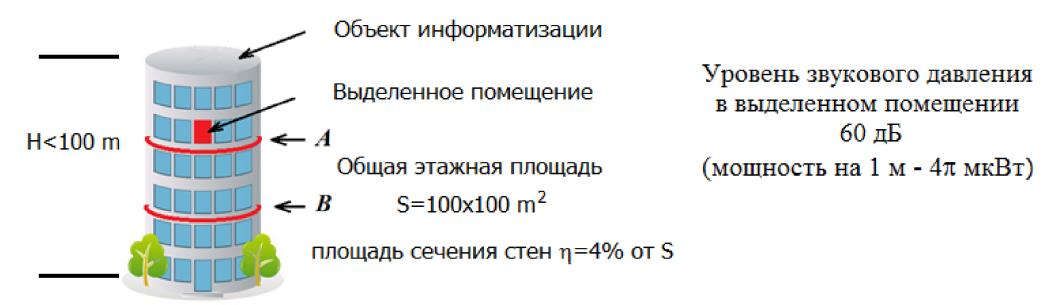
скорость звука в воздухе 340,3 м/с , плотность воздуха 1,225 кг/м³ при нор.атм.усл.

Информативный акустический сигнал - структурный звук

вибрационный (структурный) акустический канал утечки речевой информации

Основные параметры речевого сигнала в твердых средах

Скорость распространения порядка	20006000 m/c	(для воздуха 340,3 м/с)
Плотность среды	10005000 κг/м ³	(для воздуха 1,225 кг/м³)
Акустическое сопротивление	(1 5)·10 ⁷ Па·с/м	(для воздуха 417 Па∙с/м)
Акустическое смещение частиц среды	(0,10,01) нм (60 дБ)	(для воздуха ∼10 нм)


Характеристики распространения звука в твердых средах по интенсивности Коэффициент поглощения звука

```
сталь \alpha\sim0,38\cdot10^{-7}\cdot f м^{-1} (где f в Гц), тогда \alpha\sim38\cdot10^{-6} м^{-1}= 0,165 дБ/км (где f=1 кГц при \lambda=5 м) (Физические величины. Справочник. Под ред. Григорьев И.С., Мейлихов Е.З. М.: Энергоатомиздат. 1991) бетон тяжелый \alpha\sim\pi(4..8)\cdot10^{-3} /\lambda м^{-1} (где \lambda в м), тогда \alpha\sim5,5\cdot10^{-3} м^{-1}= 24 дБ/км (где \lambda=3,4 м при f=1 кГц) кирпич \alpha\sim\pi(1..2)\cdot10^{-2} /\lambda м^{-1} (где \lambda в м), тогда \alpha\sim15\cdot10^{-3} м^{-1}= 65 дБ/км (где \lambda=3 м при f=1 кГц)
```

(L. Cremer, M. Heckl, B.A.T. Petersson Structure-Borne Sound. Structural Vibrations and Sound Radiation at Audio Frequencies. 3rd edition. - Springer-Verlag Berlin Heidelberg, 2005.)

Информативный акустический сигнал

оценка размеров зоны разведывательной доступности по структурному звуку

приближения:

из общей мощности звука в воздухе в мощность структурного звука переходит только некоторая часть $k = 1/\pi$, остальное преобразуется в тепло; потерями мощности воздушного и структурного звука за время в 1 сек пренебрегаем; структура здания однородна по высоте;

структурный звук полностью остается в стенах и конструкция здания

интенсивность структурного звука по всем сечения здания (А, В) равна 40 дБ

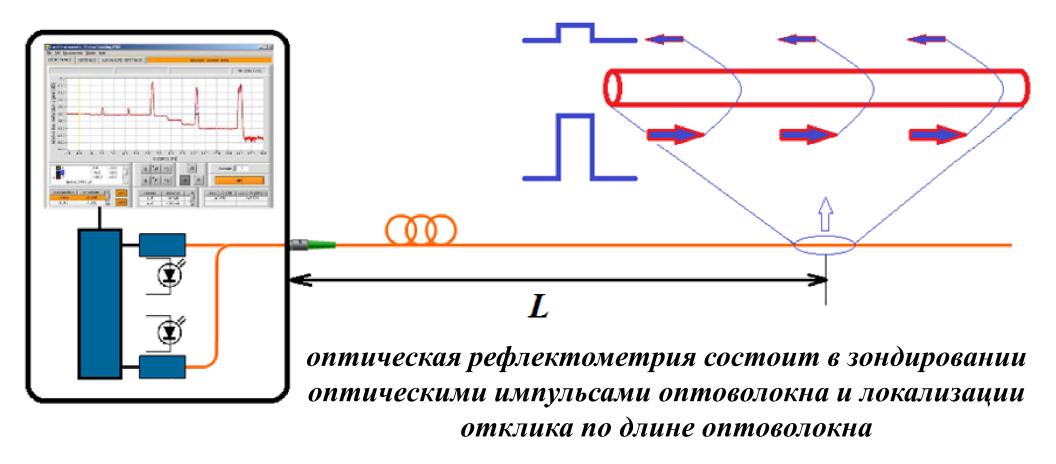
Информативный акустический сигнал

оценка размеров зоны разведывательной доступности по структурному звуку

схематичное изображение зон акустической разведоступности по структурному звуку:

ARO - характерный размер здания;

AR1 - область распространения структурного звука в грунте толщиной *h* вокруг здания (порядка 100 км);


AR2 - область распространения структурного звука в инженерных и хозяйственных коммуникациях поперечным сечением S_0

(порядка 200 км);

в приближении малости затухания звука И по предельной чувствительности по смещению частиц среды - 2 пм

оценка сделана

Оптическая рефлектометрия в канале утечки речевой информации

регистрируемое обратно рассеянное/отраженное излучение несет информацию о состоянии оптического волокна в месте рассеяния, расстояние L до которого определяется по времени задержки τ сигнала: $L = c \cdot \tau/2n$, $c \ (\approx 3 \cdot 10^8 \ m/s)$ - скорость света в вакууме, $n \ (\approx 1.4)$ - показатель преломления волокна;

позволяет отсечь фоновые шумы от других участков оптического волокна;

Информативный оптический сигнал

параметры оптической сети и оптической рефлектометрии

Основные параметры оптоволокна

Показатель преломления 1,46 Коэффициент поглощения 0,16 дБ/км (1550 нм)

Характеристика оптической рефлектометрии

Динамический диапазон более 60 дБ

Длина зондирующего импульса от менее 1 нс

Дальность зондирования более 250 км

Пространственное разрешение от 10 мкм

Характеристика систем виброакустического мониторинга

Протяженной охранной зоны по одному волокну от 0,5 км до 40 км

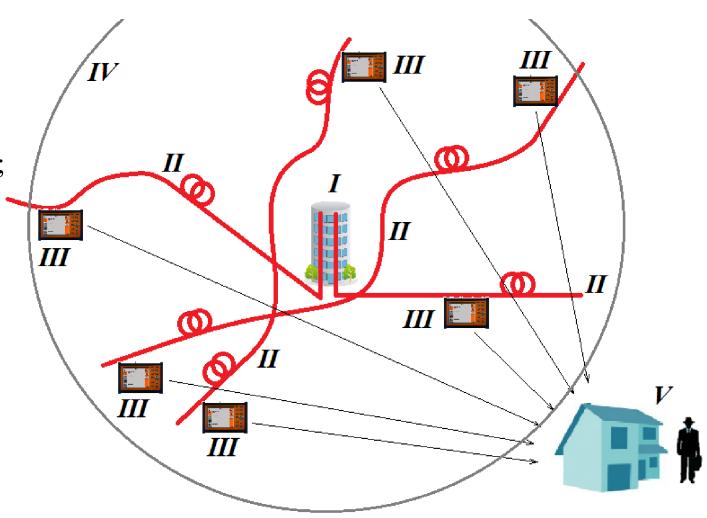
Точность обнаружения вторжения до 1 м

оценка размеров разведывательной доступности по оптическому сигналу

по лучшим оптическим рефлектометрам более 200 км по лучшим системам охраны периметра более 40 км

Реализация канала утечки речевой информации через ВОК

Принципиальная схема разведывательной распределенной измерительной оптической сети на основе штатных оптических сетей вблизи объекта


I - объект информатизации;

II - штатные оптические сети на и вблизи объекта;

III - оптические рефлектометры разведывательной сети;

IV - зона разведывательной доступности;

V - нарушитель.

Фазовая селекция информативного сигнала на фоне шума

состоит в регистрации амплитуды информативного сигнала с учетом её фазы, например, путем определения времени прохождения сигнала от источника до точки регистрации

примем

1...i..m - число точек измерения в разведывательной распределенной волоконнооптической измерительной системы на основе штатной волоконно-оптической сети;

 S_i и N_i — мощность сигнала и шума в i-том канале формирования информативного сигнала при мощности $P_i = S_i + N_i$ с отношением сигнал/шум $SNR_i = S_i / N_i$;

□ измерения

интегральная мощность распределенного измерения по **m** точкам с учетом фазы

$$P = S + N = \left(\sum_{i=1}^{m} \sqrt{S_i}\right)^2 + \sqrt{\sum_{i=1}^{m} N_i^2}$$

$$SNR = \left(\sum_{i=1}^{m} \sqrt{S_i}\right)^2 / \sqrt{\sum_{i=1}^{m} N_i^2}$$

□ приближения

$$=S_0$$
, $=N_0$ \le $N_0=0,001$

□ повышение до SNR=1 наблюдается при m=100 точках измерения

$$SNR = m^{3/2} SNR_0$$

Сценарий угрозы канала утечки речевой информации через ВОК

возможный сценарий реализации угрозы безопасности речевой информации на основе утечки речевой информации по волоконно-оптическим каналам штатных оптических сетей может состоять из следующих этапов

І этап - исследование/подготовка,

в котором проводится анализ возможных способов формирования канала утечки, выбор средств технической разведки, построение структуры канала утечки, оценка препятствий и возможного эффекта;

ІІ этап - настройка/испытание,

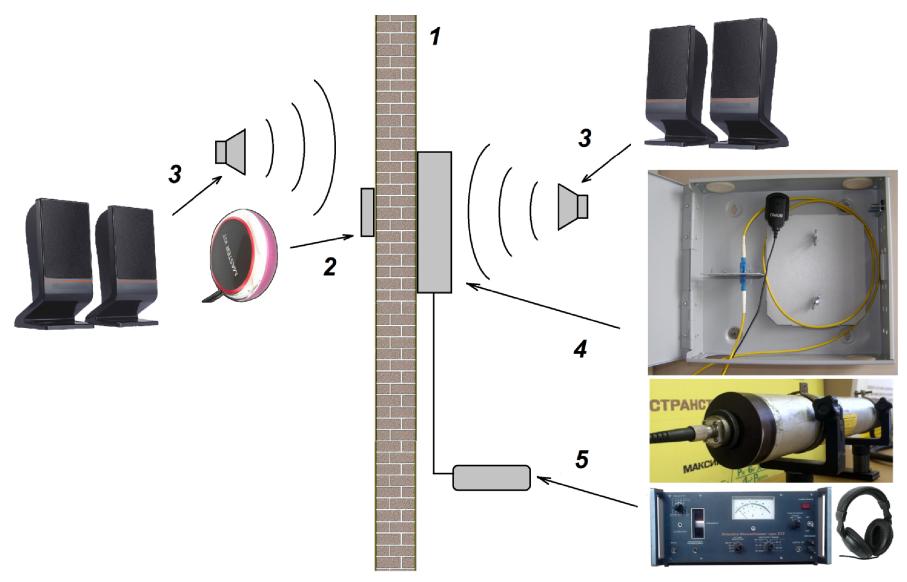
в котором осуществляются практические работы по формированию, проводятся наладочные работы, настраиваются технические средства разведки для повышения эффективности канала утечки;

III этап - практическая работа,

т.е. фактически реализуется работа (технического) канала утечки информации.

□ замечание

на 2 этапе проводится определение фазы информативного сигнала, по времени прохождения звука от источника, и весового множителя, по амплитуде вклада, для каждой точки распределенного измерения.


© Гришачев В.В и др. ИИНиТБ РГГУ

Опасность канала утечки речевой информации через ВОК

связывается с

□ высокой чувствительностью параметров оптического излучения виброакустическим воздействиям на оптический кабель и волокно;	K
 малому затуханию звука в твердых средах и света в оптоволокне, ка следствие, большому радиусу контролируемой зоны; 	lΚ
 высокой плотности оптических кабельных каналов на объект информатизации и вблизи него в условиях городской застройки; 	ıe
 распределенностью измерений по оптическому волокну пр стационарности источника информации и кабельных систем; 	'U
□ возможностью синхронизацией активных элементов оптических сетей систем мониторинга между собой;	и
 возможностью использования штатных световых потоков для зондирования по схеме оптической рефлектометрии; 	ાત્ર

Демонстрационная модель угроз речевого ТКУИ через ВОК

Гришачев В.В., Казарин О.В., Калинина Ю.Д. Демонстрационная модель угрозы утечки акустической (речевой) информации через волоконно-оптические коммуникации // Вопросы защиты информации, №1, с. 49-58 (2018). © Гришачев В.В и др. ИИНиТБ РГГУ

Абсолютная модель угрозы речевой информации

«Абсолютная» угроза речевой информации определяется тем, что канал

- 1. не обнаруживаем, так как по одному или нескольким выявленным рефлектометрам разведывательной сети не возможно установить кто и кого прослушивают источник прослушивания определяется алгоритмом обработки всех данных.
- 2. не нейтрализуем, так как не возможно контролировать все части штатных оптических сетей в такой широкой зоне разведывательной доступности, а нейтрализация части разведывательной сети не может быть причиной прекращения функционирования.

Методы защиты

🗖 Пассивные методы

□ Активные методы

Волоконно-оптический канал утечки речевой информации

методы защиты речевой информации - пассивные

могут быть сведены к следующим стандартным мероприятиям с некоторыми модификациями:
□ звукоизоляции выделенных помещений из материалов не только с высоким коэффициентом звукопоглощением (поверхностью), но и с высоким коэффициентом поглощения звука (в объеме) во всем речевом диапазоне частот;
□ ограничением свободного размещения кабельных каналов вблизи выделенного помещения и объекта информатизации;
□ обязательной звукоизоляции кабельных каналов и несущих конструкций здания;
□ использованием для формирования внутренней оптической кабельной системы пассивных элементов с минимальным откликом на паразитные виброакустические модуляции и наводки.

Волоконно-оптический канал утечки речевой информации

методы защиты речевой информации - активные

связаны с использованием современных технических средств защиты речевой
информации, таких как
Пустройства нейтрализации несанкционированного зондирования оптической
сети рефлектометрическими методами [см. патент РФ № 2 551 802];
□средств контроля оптических потоков в защищаемых оптических сетях [см.
патент РФ № 2 428 798];

□постановкой устройств паразитных акустических модуляций и наводок на световые потоки в оптических сетях [см. патент РФ № 2 416 166];

□включение в оптические сети устройств с шумовым оптическим излучением [см. патент РФ № 2 416 167].

которые в настоящее время не применяются

Спасибо за внимание

Патенты РФ по защите речевой информации от утечки по волоконно-оптическим коммуникациям